

NO2-B1 Nitrogen Dioxide Sensor

PATENTED

Figure 1 NO2-B1 Schematic Diagram

DEDECRMANOE	0 10 - 16 -	- A / i 40 NIO	450 to 4000		
PERFORMANCE	,	nA/ppm in 10ppm NO ₂	-450 to -1000		
	Response time	t_{90} (s) from zero to 10ppm NO_2 (33 Ω load resistor)	< 60		
	Zero current	ppm equivalent in zero air	$< \pm 0.2$		
	Resolution	RMS noise (ppm equivalent) (33 Ω Load Resistor)	< 0.02		
	Range	ppm NO ₂ limit of performance warranty	20		
	Linearity	ppm error at full scale, linear at zero and 10ppm NO ₂	$< \pm 0.2$		
	Overgas limit	maximum ppm for stable response to gas pulse	100		
LIFETIME	Zero drift	ppm equivalent change/year in lab air	< 0.03		
	Sensitivity drift	% change/year in lab air, monthly test	< -20 to -40		
	Operating life	months until 80% original signal (24 month warranted)	> 24		
ENVIRONMENTAL					
	Sensitivity @ -20°C	% (output @ -20°C/output @ 20°C) @ 5ppm NO ₂	75 to 95		
		% (output @ 50°C/output @ 20°C) @ 5ppm NO ₂	100 to 112		
	Zero @ -20°C	ppm equivalent change from 20°C	< ± 0.1		
	Zero @ 50°C	nnm equivalent change from 20°C	< 0 to -0.5		

	Zero @ -20°C Zero @ 50°C	ppm equivalent change from ppm equivalent change from	20°C	< ± 0.1 < 0 to -0.5
CROSS	H ₂ S sensitivity	% measured gas @ 20ppm	H₂S	< -100
SENSITIVITY	NO sensitivity	% measured gas @ 50ppm	NÔ	< 0.5
	Cl ₂ sensitivity	% measured gas @ 10ppm	Cl ₂	< 100

NO	sensitivity	% measured gas @ 50ppm	NO	< 0.5
Cl ₂	sensitivity	% measured gas @ 10ppm	Cl ₂	< 100
SŌ,	sensitivity	% measured gas @ 20ppm	SŌ ₂	< -2
CO	sensitivity	% measured gas @ 400ppm	CO	< 0.1
H_2	sensitivity	% measured gas @ 400ppm	H_2	< 0.1
C_2H_4	sensitivity	% measured gas @ 400ppm	C_2H_4	< 0.1
$N\bar{H}_3$	sensitivity	% measured gas @ 20ppm	$N\bar{H}_3$	< 0.1
CO_2	sensitivity	% measured gas @ 5% (Vol)	CO_2	0

KEY SPECIFICATIONS

ı	10113		
	Temperature range	°C	-20 to 50
	Pressure range	kPa	80 to 120
	Humidity range	% rh continuous (see note below)	15 to 90
	Storage period	months @ 3 to 20°C (stored in sealed pot)	6
	Load resistor	Ω (for optimum performance)	33
	Weight	g	< 13

Note: Above 85% rh and 40°C a maximum continuous exposure period of 10 days is warranted. Where such exposure occurs the sensor will recover normal electrolyte volumes when allowed to rest at lower % rh and temperature levels for several days.

At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact the instrument manufacturer, Alphasense or its distributor for disposal instructions.

NOTE: all sensors are tested at ambient environmental conditions, with 10 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.

chnica

NO2-B1 Performance Data

Figure 2 Sensitivity Temperature Dependence

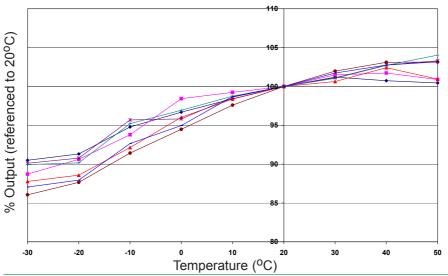


Figure 2 shows the variation in sensitivity caused by changes in temperature.

This data is taken from a typical batch of sensors.

Figure 3 Zero Temperature Dependence

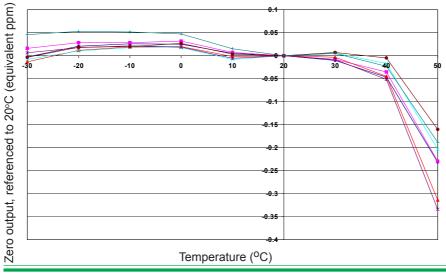


Figure 3 shows the variation in zero output caused by changes in temperature, expressed as ppm gas equivalent, referenced to zero at 20°C.

This data is taken from a typical batch of sensors.

Figure 4 Effect of Load Resistor Value on Noise

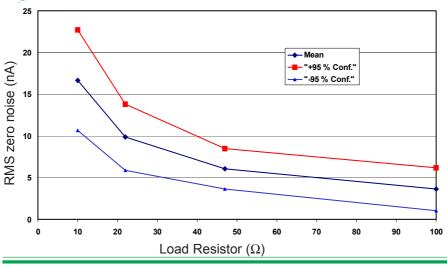


Figure 3 shows the effect of the load resistor on the RMS zero noise for the NO2-B1 sensor. The mean and ±95% confidence intervals are shown.

The t_{90} response time increases linearly with increasing load resistor value. If a fast response is required then a 10 Ω load resistor should be employed; this will give a fast response.