

SG01XXL-8ISO90

Broadband SiC based UV photodiode $A = 36 \text{ mm}^2$

GENERAL FEATURES

1/3

Properties of the SGo1XXL-8ISO90 UV photodiode

- Broadband UVA+UVB+UVC, PTB reported high chip stability
- Active Area A = 36 mm²
- TO8 hermetically sealed metal housing, two isolated pins in a circle
- 10µW/cm² peak radiation results a current of approx. 468 nA

About the material Silicon Carbide (SiC)

SiC provides the unique property of extreme radiation hardness, near-perfect visible blindness, low dark current, high speed and low noise. These features make SiC the best available material for visible blind semiconductor UV detectors. The SiC detectors can be permanently operated at up to 170°C (338°F). The temperature coefficient of signal (responsivity) is also low, < 0,1%/K. Because of the low noise (dark current in the fA range), very low UV radiation intensities can be measured reliably. Please note that this device needs an appropriate amplifier (see typical circuit on page 3).

Options

SiC photodiodes are available with five different active chip areas from 0,06 mm² up to 4,00 mm². Standard version is broadband UVA-UVB-UVC. Four filtered versions lead to a tighter sensitivity range. All photodiodes have a hermetically sealed metal housing (TO type), either a 5,5 mm diameter TO18 housing or a 9,2 mm TO5 housing. Further option is either a 2 pin header (1 isolated, 1 grounded) or a 3 pin header (2 isolated, 1 grounded).

NOMENCLATURE

SG01				
S, M, D, L, XL	nothing, A, B, C or E	18, 18ISO90, 18S, 5, 5ISO90	nothing, Lens, MEGA, GIGA	
Chip area	Spectral response	Housing	Special	
S 0,06 mm ²	nothing = broadband $\lambda_{\text{max}} = 280 \text{ nm}$ $\lambda_{\text{S10\%}} = 221 \text{ nm} \dots 358 \text{ nm}$	18 2-pin TO18 housing, h = 5,2 mm, 1 pin isolated, 1 pin grounded	Lens with concentrating	
M 0,20 mm ²	A = UVA $\lambda_{max} = 331 \text{ nm} \lambda_{S10\%} = 309 \text{ nm} \dots 367 \text{ nm}$	18ISO90 3-pin TO18 housing, h = 5,2 mm, 2 pins isolated, 1 pin grounded	lens, TO5 only	
D 0,50 mm ²	B = UVB $\lambda_{\text{max}} = 280 \text{ nm} \lambda_{\text{S10\%}} = 231 \text{ nm } 309 \text{ nm}$	185 2-pin TO18 housing, h = 3,7 mm, 1 pin isolated, 1 pin grounded	MEGA with attenuator up to 0,5 W/cm ²	
L 1,00 mm²	$C = UVC$ $\lambda_{max} = 275 \text{ nm}$ $\lambda_{S10\%} = 225 \text{ nm } 287 \text{ nm}$	5 2-pin TO5 housing, h = 4,3 mm for broadband; h = 6,7 mm for filtered UVA, UVB, UVC, UVI	GIGA	
XL 4,00 mm ²	E = UV-Index spectral response according to CIEo87	5ISO90 3-pin TO5 housing, h = 4,2 mm, 2 pins isolated, 1 pin grounded	with attenuator up to 7 W/cm ²	

iSweek www.isweek.com

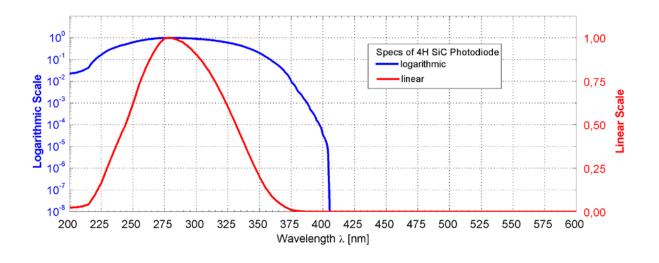
Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

Tel: + 86-755-83289036

Fax: +86-755-83289052

E-mail: sales@isweek.com

SG01XXL-8ISO90

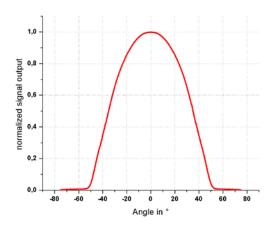

Broadband SiC based UV photodiode A = 36 mm²

2/3

SPECIFICATIONS

Parameter	Symbol	Value	Unit
Spectral Characteristics			
Typical Responsivity at Peak Wavelength	S_{max}	0,130	AW ⁻¹
Wavelength of max. Spectral Responsivity	λ_{max}	280	nm
Responsivity Range ($S=0,1*S_{max}$)	_	221 358	nm
Visible Blindness $(S_{max}/S_{>405nm})$	VB	> 10 ¹⁰	-
General Characteristics (T=25°C)			
Active Area	Α	36	mm²
Dark Current (1V reverse bias)	I_d	120	fA
Capacitance	С	9000	pF
Short Circuit (10µW/cm² at peak)	lo	468	nA
Temperature Coefficient	T_c	< 0,1	%/K
Maximum Ratings			
Operating Temperature	T_{opt}	−55 +170	°C
Storage Temperature	T_{stor}	−55 +170	°C
Soldering Temperature (3s)	T_{sold}	260	°C
Reverse Voltage	V_{Rmax}	20	V

NORMALIZED SPECTRAL RESPONSIVITY

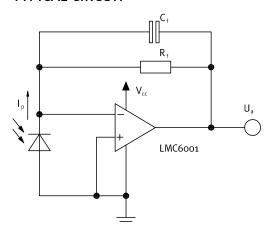


SG01XXL-8ISO90

Broadband SiC based UV photodiode A = 36 mm²

3/3

FIELD OF VIEW



Measurement Setup:

lamp aperture diameter: 10 mm distance lamp aperture to second aperture: 17 mm second aperture diameter: 10 mm distance second aperture to detector: 93 mm

pivot level = top surface of the photodiode window

TYPICAL CIRCUIT

Calculations and Limits:

$$U_a = \ I_p x \ R_f = \ o \ ... \ \sim \ V_{cc}$$

 $U_{a,max}$ depends on load and amplifier type

$$R_f = 10k\Omega$$
 ... $\sim 10G\Omega$, $C_f \ge 3pF$
Recommendation: $R_f \times C_f \ge 10^{-3}s$
 $I_{p,max} = U_{a,max} \div R_f$

Bandwidth = DC ...
$$\frac{1}{2\pi \times R_f \times C_f}$$

Example

 $I_p = 20$ nA, $R_f = 100$ M Ω , $C_f = 100$ pF $U_a = 20$ x 10^9 A x 100 x 10^6 $\Omega = 2$ V