

Sensor Description

Thermal Conductivity Sensor for Leak or Pressure Detection MTCS2601

MTCS2601 silicon sensing die in SMD ceramic package

- Thermal conductivity sensor for primary vacuum measurement
- Silicon device in SMD ceramic package. Delivery in Tape & Reel
- Small dimension compatible with measurement in very small volume
- Low power consumption and short time constants
- Optimal sensitivity in the range 10⁻² to 10⁺² mbar. Possible extension in the range 10⁻⁴ to Patm
- Low cost for volume application

Applications

- Primary vacuum control following Pirani principle. This sensor is easily added within a pressure valve or directly in vacuum pipes or systems, such as small mechanical pumping systems, vacuum pumping machine and analytical instruments.
- Leakage miniature SMD sensor as control integrity of closed systems or instruments under dedicated pressure, able to detect defect like corrosion or simply box opening (load cells; flywheel systems, Dewar...)

Features

- Robust MEMS sensor following physical Pirani principle (hot wire) with no chemical reaction, based on gas thermal
 conductivity variation versus pressure
- Measuring range from 10⁻⁴ to 1000 mbar with excellent reproducibility
- Temperature compensated with excellent matching of compensation and heating resistors on the same silicon die
- Ultra small sensor gas volume such as < 0.1 cm³
- Robust and long MTBF (> 30'000 hs) due to physical resistive sensing principles
- Ultra-low power sensor consumption in operation (< 6 mW) due to the use of MEMS based micromachined silicon sensor with small heated mass.
- Ultra-fast response time < 50 ms
- Insensitive to mounting position
- Gold contact version upon request for corrosive gas environment
- Compatible with a simple constant excess temperature operation circuit

The MTCS2601 sensors consist of a micro-machined thermal conductivity sensor using four Ni-Pt resistors realized using MEMS technologies. The sensor is mounted in a miniature SMD package, available on tape and real. This MEMS TC sensor, combined with simple low power CMOS standard integrated circuits, is an excellent choice for size-critical leakage OEM detector or miniature vacuum gauge based on Pirani principle requiring ultra-low power consumption, long lifetime and no maintenance. Applications are primary pressure control in rough environment with power and size constraints, or detection in closed volume of gas leakage or moisture, or intrusion.

MTCS2601 characteristics

Electrical specification

Description	Symbol	Min	Typical	Max	Unit
Measuring resistance at 23°C ± 2°C	Rm1 and Rm2	110	120	135	Ω
Reference resistance at 23°C± 2°C	Rt1 and Rt2	240	270	300	Ω
Ratio	Rtx/(Rm1+Rm2)	1.06	1.12	1.18	
Resistance difference	Rm1-Rm2	-1.5		+ 1.5	Ω
Resistance difference	Rt1-Rt2	-3.5		+ 3.5	Ω
Temperature coefficient (Rm,Rt) 20°C-100°C	α	0.0050	0.0055	0.0060	/°C
Geometry factor	G		3.9		mm
Thermal loss coefficient	β		0.101		mW/°C

Absolute maximum ratings

Description	Symbol	Min	Typical	Max	Unit
Heating current in (Rm1+Rm2) – Air; Ta=23°C	lh			6.2	mA
Heating Power (Rm1+Rm2) – Air; Ta=23°C	Р			15.8	mW
Membrane temperature	Tm			180	°C
Ambient temperature	Та	-20		100	°C
Humidity – No condensing	RH	0		100	%

Recommended operating condition

MGSM2601 has four resistors connected separately: Rm1 and Rm2 are located on the membrane and are used for heating/measurement; Rt1 and Rt2 are located on the "cold part" of the device and are used for temperature measurement and compensation. For pressure measurement in primary vacuum, a constant excess temperature operating mode is recommended. Such circuits are presented below. As the conductivity change is important in this range of pressure and can be rapid depending on the application, this is the best way to avoid any damage on the sensor.

Storage condition

Temperature: -40 to +100°C

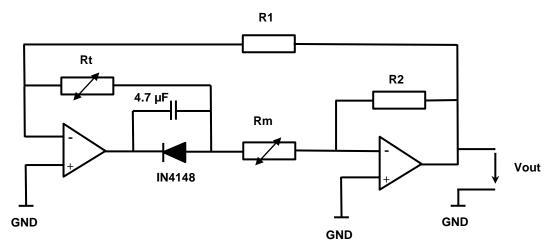
Humidity: 0 - 100% RH, non condensing

Mechanical stress tests

Chocks: 1000 g, 0.2 ms, half-sine (one meter onto concrete drop)

Vibrations: 10 g RMS, sine wave sweep 20 – 2000 Hz

Base material: Silicon, micro-structured by anisotropic etching


Tel: + 86-755-83289036

Fax: + 86-755-83289052

Recommended application circuit: constant excess temperature operation

The recommended **constant excess temperature application circuit** is presented below. The diode determines the polarity of the loop output voltage Vout, positive values in the circuit below. Such circuit is fully compatible with rapid change in thermal conductivity over a wide range of pressure $[10^{-5};10^{+3}]$ mbar.

Recommended Op-Amps: TSG922 for example

There are two possible circuits. In both cases, the two membrane heating/measuring resistors Rm1 and Rm2 are connected in series: Rm=Rm1+Rm2

(1)
$$\frac{R1}{R2} = \frac{Rt(Ta)}{Rm(Ta)*(1+\alpha\Delta T)}$$

α= temperature coefficient; ΔT=(T-Ta) with Ta=ambient temperature and T is the heating temperature

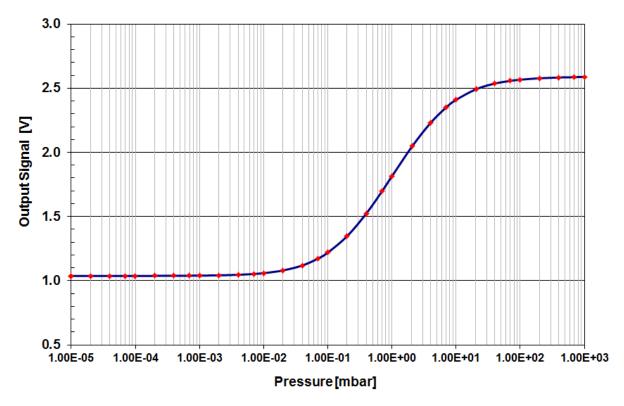
Using such quotient in the loop, this signal is first order temperature compensated.

(2)
$$\Delta T = \frac{1}{\alpha} \left[\frac{R2}{R1} * \left(\frac{Rt(Ta)}{Rm(Ta)} \right) - 1 \right]$$

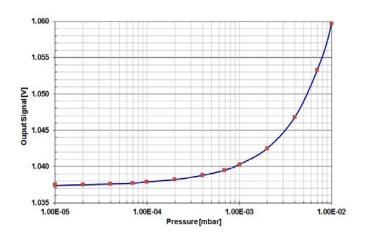
(3)
$$Vout^2 = \frac{R2*G*\lambda}{\alpha}*(\frac{Rt0*R2-Rm0*R1}{Rm0*Rt0})$$

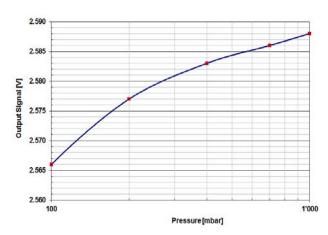
 λ = thermal conductivity of the gas; G=geometry factor

 $Rm(T)=Rmo^*(1+\alpha^*T)$; $Rt(T)=Rto^*(1+\alpha^*T)$


<u>Circuit a)</u> In this case, the two resistors Rt1 and Rt2 are connected in series **Recommended resistors values**: R1=1000 Ω ; R2=560 Ω .

<u>Circuit b</u>) In this case, only one of the two resistors Rt1 or Rt2 is used in the loop, i.e. Rt1. This allows the other resistor Rt2 to be used as an additional second order temperature compensation **Recommended resistors values**: R1=500 Ω ; R2=560 Ω .


Using these values, a typical excess temperature ΔT =50°C is obtained. The output signal is typically 2.5 volt, with a sensitivity of 0.5 volt/decade in the range 0.1 to 10 mbar


MTCS2601 response versus pressure in the range [10⁻⁵;10⁺³] mbar

Output Signal versus Pressure in the range [10⁻⁵;10⁺³] mbar - Typical curve -

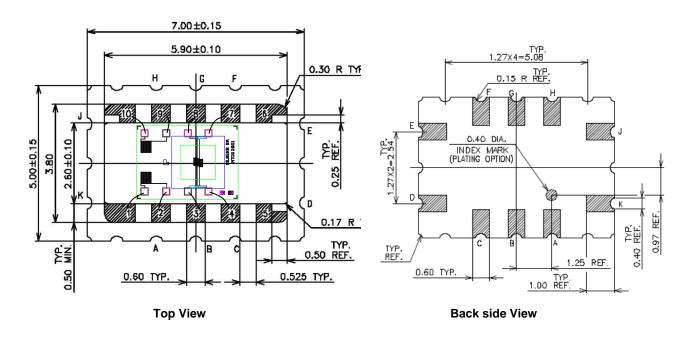
Response detail in the range [10⁻⁵;10⁻²] mbar

Response detail in the range [100;1'000] mbar

Tel: +86-755-83289036

Fax: +86-755-83289052

MTCS2601: Sensor package information

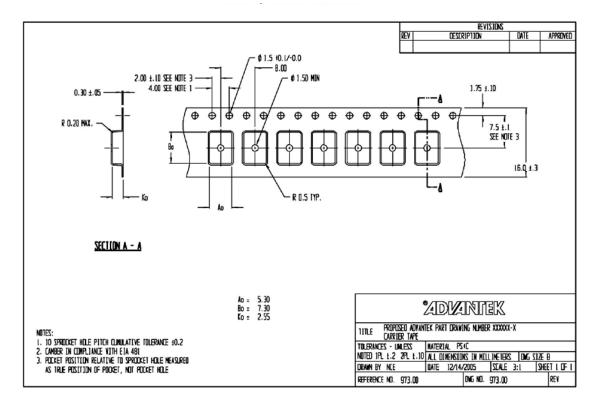

All resistances are individually bonded

Pin-out & package general information		
Overall size of the SMD package with protective grid	7.00 x 5.00 x 1.50 mm	
Pin-out - Rm1	Top side view (4–7); Back side view (C-F)	
Pin-out - Rm2	Top side view (3–8); Back side view (B-G)	
Pin-out - Rt1	Top side view (1–2); Back side view (K-A)	
Pin-out - Rt2	Top side view (9–10); Back side view (H-J)	
	(5,6); (E,D): no connected	
Gold wire		
Metal pads	Standard Al; Au on request	
Protective grid	Anodized aluminum	
Soldering information	Max: 250°C; 90 seconds	
Delivery condition	Tape & Reel 16 mm	

Connection:

(1-K); (2-A); (3-B), (4-C)

(7-F); (8-G); (9-H); (10-J)


A specific PTFE filter can be added on the grid to avoid risk of water drops or oil drops onto the sensor for dirty environment conditions

Parts exposed to vacuum: aluminum, bulk silicon, silicon dioxide, silicon nitride, fused quartz, metallic grid

Tel: + 86-755-83289036

Fax: +86-755-83289052

Tape & Reel delivery: typically 740 sensors/reel

Ordering information:

Part number: Description:

MTCS2601 Sensor in LCC package with a metallic grid

iSweek www.isweek.com

Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

Tel: + 86-755-83289036 Fa

Fax: +86-755-83289052