# Sweek.com

# TCS205 [Thermal conductivity sensor]



- Thermal conductivity sensor for gases
- Silicon micromechanics
- Very small dimensions
- Short time constants
- Measurement of very small gas volumes
- Gas exchange by diffusion

#### DESCRIPTION

The sensor element consists of a silicon chip with a thin membrane approximately  $1mm^2$  in size of a material with extremely good electrical and thermal insulating properties. On the membrane are two thin film resistors  $(R_{m1}, R_{m2})$  which are both used for heating the membrane and for measurement of membrane temperature Tm. The resistors are passivated to protect them from the effects of the gas. The membrane is completely covered by a second small silicon chip with a rectangular cavity etched in. The hollow space thus formed above the membrane is the thermal conductivity section. The gas comes to the measuring section through a small lateral opening in the membrane cover by diffusion only, and not by flow.

The sensor chip and its cover are attached to a silicon support which also permits gas exchange to the lower side of the membrane. The sensor is electrically connected to an eight pin base by gold wire bonding.

Due to the thermal conductivity I of the gas surrounding the membrane, thermal energy is dissipated from the membrane held at higher temperature Tm. Measured is the signal needed in a temperature stabilization circuit to keep the excess temperature of the membrane DT constant.

On the solid part of the chip are two more resistors ( $R_{t1}$ ,  $R_{t2}$ ) to measure and compensate for the effect of the ambient temperature  $\vartheta$ .

## FEATURES

## **APPLICATIONS**

- Measuring hydrogen content thermal conductivity
- Analyzing binary gas by evaluating
- Determination of CO2 vs. Methane
- Discrimination of natural gas
- Measurement of Helium or Xenon contents
- Industrial application
- Monitoring of gas characteristic
- Determining gas concentration
- Landfill or digestor gas
- Different origin gas or compositions gas

#### iSweek www.isweek.com

Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

## **ABSOLUTE MAXIMUM RATINGS**

| Description                                          | min. | typ. | max. | Unit |
|------------------------------------------------------|------|------|------|------|
| Heating power P (R <sub>m1</sub> + R <sub>m2</sub> ) |      |      | 30   | mW   |
| Membrane temperature T <sub>m</sub>                  |      |      | 180  | °C   |
| Ambient temperature 9                                | -20  |      | +85  | °C   |
| Gas pressure on base <sup>1</sup>                    |      |      |      |      |

## **SPECIFICATION**

| Description                                                                                         | min.  | typ.  | max.  | Unit            |
|-----------------------------------------------------------------------------------------------------|-------|-------|-------|-----------------|
| Resistances R <sub>m1</sub> , R <sub>m2</sub> (T <sub>amb</sub> @ 25°C)                             | 92    | 100   | 115   | Ω               |
| Resistances R <sub>t1</sub> , R <sub>t2</sub> (T <sub>amb</sub> @ 25°C)                             | 220   | 240   | 275   | Ω               |
| Quotient $R_{tx} / (R_{m1} + R_{m2})   x \epsilon \{1,2\}$                                          | 1.13  | 1.2   | 1.27  |                 |
| Resistance difference R <sub>m1</sub> - R <sub>m2</sub>                                             | -2.00 |       | +2.00 | Ω               |
| Temperature coefficient (R <sub>m</sub> , R <sub>t</sub> )   20°C – 100°C ( $\alpha$ ) <sup>2</sup> | 4800  | 5500  | 5900  | ppm/K           |
| Geometry factor (G) <sup>3</sup>                                                                    |       | 3.6   |       | mm              |
| Membrane thermal time constant $(\tau_m)$                                                           |       | < 5   |       | ms              |
| Time constant for gas exchange ( $\tau_{diffusion}$ )                                               |       | <100  |       | ms              |
| Drift (Rxy)   x ε {m,t} ; y ε {1,2}                                                                 |       | 0.001 | 0.01  | %/week          |
| Volume of diffusion chamber structure                                                               |       | 0.2   |       | mm <sup>3</sup> |
| Surrounding volume to be kept clear (see Fig.5)                                                     |       | 100   |       | mm <sup>3</sup> |

#### Base material:

Silicon, microstructured by anisotropic etching

Material of parts exposed to gas: Si, SiNx, gold, epoxy

Mechanical stress tests have been performed on prototype sample devices for:

| Vibration: | in accordance with IEC 68-2-6 Appendix B (1982) 10 cycles;            |
|------------|-----------------------------------------------------------------------|
|            | ±1.5mm; 20g; 102000Hz; 1octave/min                                    |
| Shock:     | in accordance with IEC 68-2-27 Amendment #1 (Oct.82) 10               |
|            | shocks each radial and axial; 100g; 7.5ms / 300g; 2.5ms / 900g; 1.2ms |

### ISweek www.isweek.com

Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

<sup>&</sup>lt;sup>1</sup> Pressure data according to supplier specifications for properly supported device

<sup>&</sup>lt;sup>2</sup> min. value of  $\alpha$  quoted only for applications to be compatible with a potential second source of lower specs. Product is constantly being improved to get closer to DIN 43760 specifications.

 $<sup>^{3}</sup>$  The factor G is determined by the internal sensor geometry.

## **RECOMMENDED OPERATING CONDITIONS**

| Description                                              | min. | typ. | max. | Unit |
|----------------------------------------------------------|------|------|------|------|
| Heating power P (R <sub>m1</sub> + R <sub>m2</sub> )     |      |      | 5    | mW   |
| Membrane excess temperature $\Delta T = T_m - \vartheta$ | (30) | 50   | 70   | °C   |

The minimum  $\Delta T$  for any application is determined by the resolution of thermal conductivity  $\lambda$  required in combination with the noise of the amplifier circuit used. A very low  $\Delta T$  has advantages in terms of linearity, low drift and better long-term stability of the sensor.

## NOTES ON USE OF THE SENSOR

#### **Operation of the sensor**

The four resistors  $R_{m1}$ ,  $R_{m2}$ ,  $R_{t1}$  and  $R_{t2}$  on the TCS205 sensor are connected separately to the eight pins on the TO5-style base. Fig.1 shows the pin assignments looking at the sensor side. To operate the sensor it is advisable to apply approximately equal heating power to the two membrane resistors  $R_{m1}$  and  $R_{m2}$  to avoid temperature gradients on the heated surface. The power used to measure the ambient temperature via resistors  $R_{t1}$  and  $R_{t2}$  should not exceed the power dissipated in the resistors  $R_{m1}$  and  $R_{m2}$  to avoid heating the sensor chip.

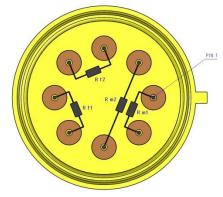



Fig.1: Pin assignment (top view)

#### Effect of ambient temperature

A given heating power in the membrane resistors produces an excess temperature T in the membrane compared with the solid part of the sensor chip which depends on the absolute ambient temperature only very little through the temperature coefficient of the thermal conductivity of the gases (typically 10<sup>-3</sup>/°C). The absolute resistance values however vary with the ambient temperature just as they do with changing thermal conductivity. Therefore in general temperature compensation will have to be implemented.

ISweek www.isweek.com

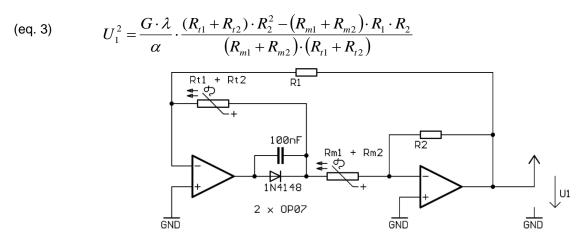
Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

Tel: + 86-755-83289036 Fax: + 86-755-83289052 E-mail: sales@isweek.com



#### **Recommended application circuits**

Three application circuits are described. Whereas the first one uses a constant membrane excess temperature and is fairly safe against rapid changes in thermal conductivity over a very wide range the membrane can be destroyed by even very short interruptions of the R<sub>t</sub> leads and the power up dynamics of the positive feedback loop have to be controlled. The other two circuits use a constant membrane current  $i_m$  (or a constant voltage with a relatively large series resistor). In all cases the membrane excess temperature  $\Delta T$  is:


(eq. 1) 
$$\Delta T = \frac{1 + \alpha}{\frac{G \cdot \lambda}{i_m^2 \cdot R_m}}$$

#### Constant excess temperature operation

Fig.2 shows a temperature compensated application circuit for constant excess temperature operation ( $\Delta T$ =const.) of the sensor. The membrane heating/measuring resistors  $R_{m1}$  and  $R_{m2}$  are connected in series between the two operational amplifiers. Also both ambient temperature measurement resistors  $R_{t1}$  and  $R_{t2}$  are connected in series and are negative feedback for the first amplifier. The two amplifiers form a positive feedback loop. This loop will be in a stable state with a total gain of one determined by the nonlinear functions of current and voltage at both  $R_m$  (=  $R_{m1}+R_{m2}$ ) and  $R_t$ (=  $R_{t1}+R_{t2}$ ) which in turn depend on temperature and thermal conductivity  $\lambda$  of the gas in the sensor. The membrane excess temperature  $\Delta T$  is determined by the quotient  $R_1/R_2$  according to the equation:

(eq. 2) 
$$\frac{R_1}{R_2} = \frac{R_{t1} + R_{t2}}{(R_{m1} + R_{m2}) \cdot (1 + \alpha \cdot \Delta T)}$$

By electronically calculating the quotient  $(R_{m1}+R_{m2})/R_{t1}$  within the loop the signal is first order temperature compensated. An additional external temperature second order compensation can be implemented using  $R_{t2}$ . The diode determines the polarity of the loop output voltage  $U_1$  the magnitude of which is defined by:





Example for dimensioning this application circuit:

 $\begin{array}{lll} \mbox{Conditions:} & \Delta T = 36.4 K & U_1 = 5.8 V \mbox{ for } I(N_2) = 0.0275 \mbox{ W/m*K (at 50°C)} \\ \mbox{Results:} & R_1/R_2 = 1.00 & R_1 = 1.5 \mbox{ k}\Omega & R_2 = 1.5 \mbox{ k}\Omega \\ \mbox{Sensitivity:} & 1\% \mbox{ He in } N_2 \mbox{ increases } U_1 \mbox{ by approx. } 140 mV \end{array}$ 

#### ISweek www.isweek.com

Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

Tel: + 86-755-83289036 Fax: + 86-755-83289052 E-mail: sales@isweek.com

# iSweek.com

# TCS 205 [Thermal conductivity sensor]

#### **Constant membrane current operation**

Fig.3 shows a second order temperature compensated application circuit for constant membrane current operation ( $i_m$ =const.) of the sensor. The two heating/measuring membrane resistors  $R_{m1}$  and  $R_{m2}$  are connected in series in the feedback of the first operational amplifier. A temperature compensated negative reference voltage -U<sub>ref</sub> drives a constant current through  $R_1$ . The same current flows through the membrane resistors. The ambient temperature measurement resistors  $R_{t1}$  in series with  $R_{t2}$  between the two operational amplifiers provides first order temperature compensation.

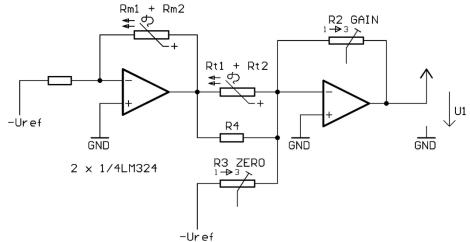



Fig.3: Application circuit for constant membrane current operation

Offset and gain are controlled using the trim resistors  $R_2$  and  $R_3$  of the second stage. Attenuating the temperature dependence of the coupling between the two stages  $R_4$  introduces a second order temperature compensation. This resistor's value must be chosen according to the gases measured.

Typical dimensioning of this application circuit ( $i_m = 4mA$ ; not to be used for gases below the thermal conductivity of CO<sub>2</sub>):

 $U_{ref} = 6.2 \text{ V};$   $R_1 = 1.5 \text{ k}\Omega;$   $R_4 = 7.5 \text{ k}\Omega$  for  $N_2;$   $R_2 = 50 \text{ k}\Omega;$   $R_3 = 10 \text{ k}\Omega$  (coarse) in series with 100 $\Omega$  (fine); all trim resistors linear multiturn ceramic metal (e.g. Bourns® or Spectrol®)

#### Wheatstone bridge operation

Fig.4 shows an application circuit for use with a strain gauge amplifier. It operates the sensor in a Wheatstone bridge configuration. Due to the relatively large resistor  $R_1$  its characteristics are very similar to the constant membrane current operation as described above. Both membrane resistors are connected in series and divide the excitation voltage together with  $R_1$ . The temperature measurement resistors  $R_{t1}$  in series with  $R_{t2}$  are used in the other path for first order temperature compensation. Offset is controlled by balancing the bridge using the trim resistor  $R_3$ , gain by a resistive load on the diagonal voltage using  $R_5$ . The fixed resistor  $R_4$  introduces a second order temperature compensation by attenuating the ambient temperature influence on the right hand half bridge. Also in this case the value of  $R_4$  must be chosen fitting to the gases measured.

**İSweek** www.isweek.com Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China Tel: + 86-755-83289036 Fax: + 86-755-83289052 E-mail: sales@isweek.com

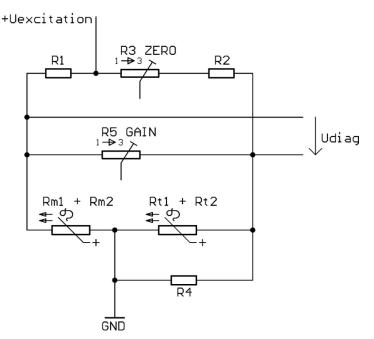



Fig.4: Application circuit for Wheatstone bridge operation

Typical dimensioning of this application circuit (im approx. 4mA; not to be used for gases below the thermal conductivity of CO2):

 $U_{\text{excitation}} = 10 \text{ V}$  R1 = 2.7 k $\Omega$  R4 = 7.5 k $\Omega$  for N2 R2 = 4.7 k $\Omega$  R3 = 2 k $\Omega$  R5 = 10 k $\Omega$  all trim resistors linear multiturn ceramic metal (e.g. Bourns® or Spectrol®)

The diagonal voltage  $U_{diag}$  may be used as the input to a standard strain gauge meter (e.g. ATC Digitec  $\circledast$  Indicator Model 3241 or Red Lion Controls PAX-S) which also supply a stabilised 10V excitation voltage.

#### **Determining gas concentration**

The thermal conductivity of a gas mixture depends on the individual gas components and on their proportion in the mixture. Under certain conditions therefore the concentration of individual gas components can be determined by measuring the thermal conductivity. The concentration can be determined with higher precision if one of the following conditions is met:

- The gas mixture consists of only two components, e.g. measuring CO<sub>2</sub> in N<sub>2</sub>, O<sub>2</sub> in N<sub>2</sub>.
- The gas mixture consists of more than two components but the concentration of only two components changes.
- The gas mixture consists of more than two components, but the component of interest has a thermal conductivity that is very different from the other components (quasi-binary mixtures). e.g. H<sub>2</sub>, He, or CO<sub>2</sub> in air.

Gas concentrations can also be determined in genuinely ternary gas mixtures if additionally to the thermal conductivity itself its temperature coefficient is determined. Due to the low thermal mass of the heating and measuring elements in the thermal conductivity sensor, this can easily be affected by modulating the heating power or alternatively by using two sensors at different membrane temperatures. The thermal conductivity can then be measured at two different gas temperatures. The gas concentrations can be calculated from the two measured values.

**İSweek** www.isweek.com Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China Tel: + 86-755-83289036 Fax: + 86-755-83289052 E-mail: sales@isweek.com

# Sweek.com

# TCS 205 [Thermal conductivity sensor]

## **MECHANICAL DIMENSIONS**

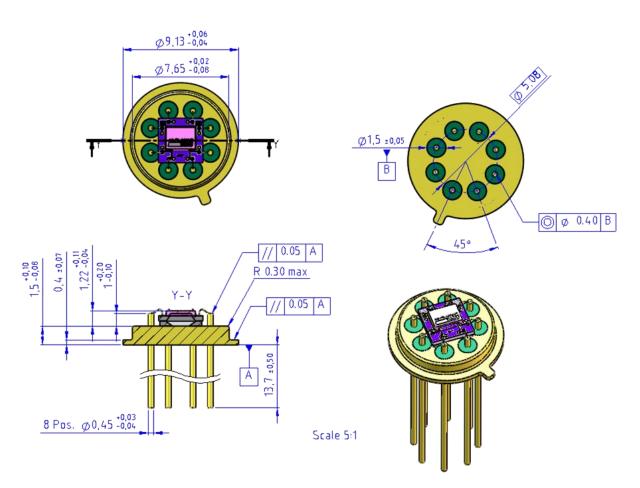



Fig.5: Mechanical dimensions (mm)

**İSweek** www.isweek.com Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China Tel: + 86-755-83289036 Fax: + 86-755-83289052 E-mail: sales@isweek.com