

TGS 2616-C00 - for the detection of Hydrogen

Features:

- * High selectivity to hydrogen
- * Small size and low power consumption
- * Uses simple electrical circuit

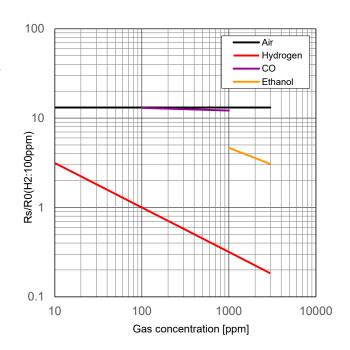
Applications:

- * Hydrogen detection for:
 - transformer oil maintenance
 - steel plant safety, etc.
- * Portable gas detectors
- * Leak detection for gas appliances
- * Hydrogen leak detectors for fuel cells

The sensing element is comprised of a metal oxide semiconductor layer formed on an alumina substrate of a sensing chip together with an integrated heater, and it is housed in a standard TO-5 package. In the presence of a detectable gas, the sensor's conductivity increases

depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.

TGS2616-C00 has a newly developed sensing element which reduces the influence of interference gases such as alcohol, resulting in highly selective response to hydrogen.



Sensitivity Characteristics:

The figure on the right represents typical sensitivity characteristics that are measured at standard test conditions. (see reverse side of this sheet for more details) The Y-axis is indicated as sensor resistance ratio Rs/Ro, where Rs and Ro are defined as below:

Rs = Sensor resistance in various gases and concentrations

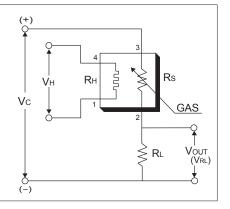
Ro = Sensor resistance in 100 ppm of hydrogen

ISweek www.isweek.com

Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

Tel: +86-755-83289036

Fax: +86-755-83289052


E-mail: sales@isweek.com

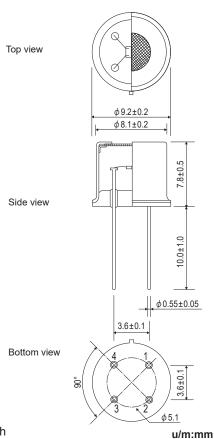
Basic Measuring Circuit:

The sensor requires two voltage inputs: heater voltage (VH) and circuit voltage (VC). The heater voltage (VH) is applied to the integrated heater in order to maintain the sensing element at a specific temperature which is optimal for sensing. Circuit voltage (VC) is applied to allow measurement of voltage VOUT(VRL) across a load resistor (RL) which is connected in series with the sensor.

A common power supply circuit can be used for both V_C and V_H to fulfill the sensor's electrical requirements. The value of the load resistor (R_L) should be chosen to optimize the alarm threshold value, keeping power dissipation (P_S) of the semiconductor below a limit of 15mW. Power dissipation (P_S) will be highest when the value of R_S is equal to R_L on exposure to gas.

Specifications:

Model number			TGS2616-C00	
Sensing principle			MOS type	
			TO-5 metal can	
Standard package			. 0 0	
Target gases			Hydrogen	
Typical detection range			10∼3000ppm	
Standard circuit conditions	Heater voltage	Vн	5.0±0.2V DC	
	Circuit voltage	Vc	5.0±0.2V DC	Ps≤15mW
	Load resistance	RL	variable	0.45kΩ min.
Electrical characteristics under standard test conditions	Heater resistance	Rн	approx 59Ω at room temp.	
	Heater current	Ін	56±5mA	
	Heater power consumption	Рн	280mW	VH = 5.0V DC
	Sensor resistance	Rs	$0.3 k\Omega \sim 8.0 k\Omega$ in 100ppm hydrogen	
	Sensitivity (change ratio of Rs)		0.14~0.52	Rs (300ppm) Rs (30ppm)
Standard test conditions	Test gas conditions		Hydrogen in air at 20±2°C, 65±5%RH	
	Circuit conditions		Vc = 5.0±0.01V DC VH = 5.0±0.05V DC	
	Preheating period before test		7 days	


The value of power dissipation (Ps) can be calculated by utilizing the following formula:

$$Ps = \frac{(Vc - V_{RL})^2}{Rs}$$

Sensor resistance (Rs) is calculated with a measured value of Vout (VRL) by using the following formula:

$$Rs = (\frac{Vc}{VRL} - 1) x RL$$

Structure and Dimensions:

Pin connection:

- 1: Heater
- 2: Sensor electrode (-)
- 3: Sensor electrode (+)
- 4: Heater