

PH3-BE Phosphine Sensor

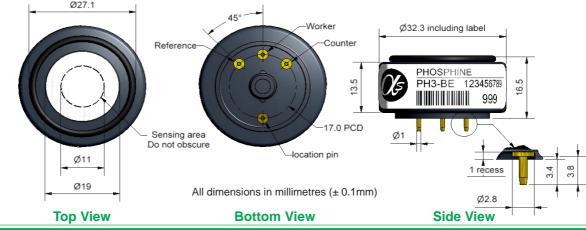


Figure 1 PH3-BE Schematic Diagram Ø27.1

PATENTED

15 to 35

> 24

nA/ppm in 800 PH.

	= 00	495 3	
	Response time	t ₉₀ (s) from zero to 800 PH ₃	< 30
	Zero current	ppm equivalent in zero air	< -6 to 20
	Resolution	RMS noise (ppm equivalent)	< 2
	Range	ppm PH ₃ limit of performance warranty	2,000
	Linearity	ppm error at full scale, linear at zero, 800ppm PH ₃	-50 to -350
	Overgas limit	maximum ppm for stable response to gas pulse	5,000
LIFETIME	Zero drift	ppm equivalent change/year in lab air	< 1.5
	Sensitivity drift	% change/year in lab air, monthly test	< 4

ENVIRONMENTAL

PERFORMANCE Sensitivity

Operating life

Sensitivity @ -20°C% (output @ -20°C/output @ 20°C) @ 800 ppm PH₃ 65 to 85 Sensitivity @ 50°C% (output @ 50°C/output @ 20°C) @ 800 ppm PH 120 to 140 Zero @ -20°C ppm equivalent change from 20°C $< \pm 20$ Zero @ 50°C ppm equivalent change from 20°C $< \pm 15$

months until 80% original signal (24 month warranted)

CROSS	H ₂ S sensitivity	% meaured gas @ 20 ppm	H ₂ S	< 110
SENSITIVITY	NO2 sensitivity	% meaured gas @ 10 ppm	NŌ ₂	< -35
	CL ₂ sensitivity	% meaured gas @ 10 ppm	Cl ₂	< -30
	NO sensitivity	% meaured gas @ 50 ppm	NÔ	< 10
	SO ₂ sensitivity	% meaured gas @ 20 ppm	SO ₂	< 25
	CO sensitivity	% meaured gas @ 400 ppm	CO	< 11
	H ₂ sensitivity	% meaured gas @ 400 ppm	H ₂	< 2
	C ₂ H ₄ sensitivity	% meaured gas @ 80 ppm	C ₂ H ₄	< 60
	NH ₃ sensitivity	% meaured gas @ 25 ppm	NH, T	< 0.1
	CO2 sensitivity	% meaured gas @ 5%	CO	< 0.1
			-	

NET Temperature range	C	-20 10 30
SPECIFICATIONS Pressure range	kPa	80 to 120
Humidity range	% rh continuous	20 to 90
Storage period	months @ 0 to 20°C (stored in original container)	6
Load resistor	Ω (recommended)	10 to 33
Bias voltage	mV above analogue ground	not required
\Maight		. 12

At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact the instrument manufacturer, Alphasense or its distributor for disposal instructions.

NOTE: all sensors are tested at ambient environmental conditions, with 10 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own

PH3-BE Performance Data

Figure 2 Zero Temperature Dependence

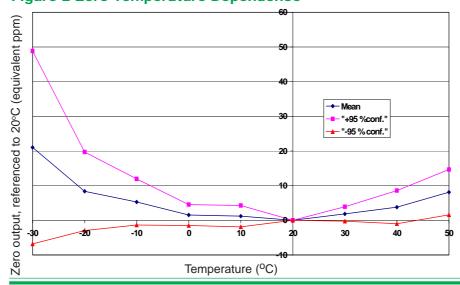
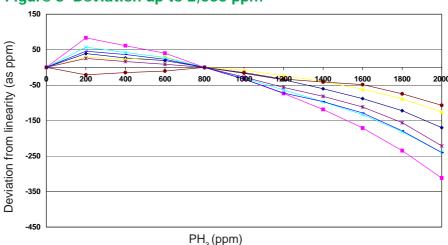
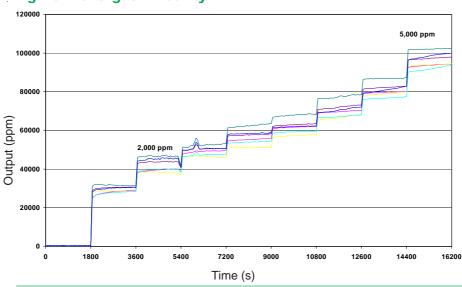



Figure 2 shows the variation in zero output caused by changes in temperature, expressed as ppm gas equivalent, referenced to zero at 20°C.

This data is taken from a typical batch of sensors. The mean and \pm 95% confidence intervals are shown.


Figure 3 Deviation up to 2,000 ppm

Sensor linearity is repeatable between sensors, allowing for software correction if required.

Data is from a typical batch of sensors.

Figure 4 Overgas Linearity

Sensors respond rapidly and are stable even at 5,000 ppm PH₃.

Sensors recover after short high concentration exposure without change to performance.

iSweek www.isweek.com

pecification

echnical