

ETO-B1 Ethylene Oxide Sensor

pecification echnica

Figure 1 ETO-B1 Schematic Diagram **PATENTED** -Worker Ø32.3 including label Counter ETHYLENE OXIDE ETO-B1 12345678 13.5 999 17.0 PCD Sensing area Do not obscure location pin Ø11 All dimensions in millimetres (± 0.1mm) **Top View Bottom View Side View**

PERFORMANCE	•	nA/ppm in 20ppm EtO	2000 to 3200					
	Response time	t ₉₀ (s) from zero to 20ppm EtO	< 200					
	Zero current	ppm equivalent in zero air	< -0.6 to +0.75					
	Resolution	RMS noise (ppm equivalent)	< 0.1					
	Range	ppm EtO limit of performance warranty	100					
	Linearity	ppm error at full scale, linear at zero, 40ppm EtO	5 to 10					
	Overgas limit	maximum ppm for stable response to gas pulse	500					
LIFETIME	Zero drift	ppm equivalent change/year in lab air	nd					
	Sensitivity drift	% change/year in lab air, twice monthly test	nd					
	Operating life	months until 80% original signal (24 month warrante	d) > 24					
ENVIRONMENTAL								
	Sensitivity @ -20°C	% (output @ -20°C/output @ 20°C) @ 40ppm EtO	30 to 50					
	Sensitivity @ 50°C	% (output @ 50°C/output @ 20°C) @ 40ppm EtO	115 to 145					
	Zero @ -20°C	ppm equivalent change from 20°C	$< \pm 0.5$					
	Zero @ 50°C	ppm equivalent change from 20°C	< +2 to +5					

Sensitivity @ 50°C Zero @ -20°C Zero @ 50°C	% (output @ 50°C/output @ 20°C) @ 40ppm EtO ppm equivalent change from 20°C ppm equivalent change from 20°C	115 to 145 < ±0.5 < +2 to +5
H.S. sensitivity	% measured gas @ 20nnm H S	< 200

CROSS	H ₂ S sensitivity	% measured gas @ 20ppm	H ₂ S	< 200
SENSITIVITY	NO ₂ sensitivity	% measured gas @ 10ppm	NO ₂	< 35
	Cl ₂ sensitivity	% measured gas @ 10ppm	Cl ₂	< -3
	NO sensitivity	% measured gas @ 50ppm	NÔ	< 80
	SO ₂ sensitivity	% measured gas @ 20ppm	SO ₂	< 40
	CO sensitivity	% measured gas @ 40ppm	CO	< 25
	H ₂ sensitivity	% measured gas @ 400ppm	H_{2}	< 0.5
	C ₂ H ₄ sensitivity	% measured gas @ 80ppm	C_2H_4	< 100
	NH ₃ sensitivity	% measured gas @ 25ppm	NH_3	< 0.1
	HCHO sensitivity	% measured gas @ 4ppm	HCHO	90
	CO ₂ sensitivity	% measured gas @ 5% volume	CO_2	< 0.1

k	(EY Temperature range	°C	-30 to 50
S	SPECIFICATIONS Pressure range	kPa	80 to 120
	Humidity range	% rh continuous	15 to 90
	Storage period	months @ 3 to 20°C (stored in original container)	6

Load resistor Ω (recommended) 10 to 33 Bias voltage mV (working electrode potential is above reference electrode potential) 300 Weight < 13

At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact the instrument manufacturer, Alphasense or its distributor for disposal instructions.

NOTE: all sensors are tested at ambient environmental conditions, with 10 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.

ETO-B1 Performance Data

Figure 2 Sensitivity Temperature Dependence

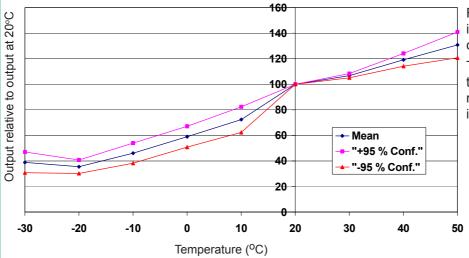


Figure 2 shows the variation in sensitivity caused by changes in temperature.

This data is taken from a typical batch of sensors. The mean and ±95% confidence intervals are shown.

Figure 3 Zero Temperature Dependence

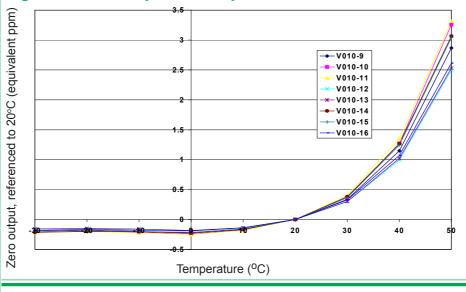
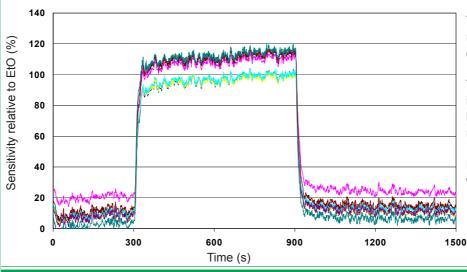



Figure 3 shows the variation in zero output caused by changes in temperature, expressed as ppm gas equivalent, referenced to zero at 20°C.

This data is taken from a typical batch of sensors.

Figure 4 Cross Sensitivity Study to 3.8 ppm Formaldehyde

The ETO-B1 responds to most VOCs that are electrochemically active.

The bias voltage of +300mV is optimum for Ethylene Oxide but needs adjusting when measuring other VOCs.

Response to formaldehyde with +300mV bias is shown.

ISweek www.isweek.com

Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China

Tel: + 86-755-83289036

pecification

chnica

Fax: +86-755-83289052

E-mail: sales@isweek.com