
Specification echnica

OX-A431 Oxidising Gas Sensor Ozone + Nitrogen Dioxide 4-Electrode

Patented

Figure 1 OX-A431 Schematic Diagram

Specification O₃ Sensing

PERFORMANCE

Sensitivity	nA/ppm at 1ppm O ₃	-200 to -550
Response time	t ₉₀ (s) from zero to 1ppm O ₃	< 45
Zero current	nA in zero air at 20°C	-50 to 70
Noise*	±2 standard deviations (ppb equivalent)	15
Range	ppm O ₃ limit of performance warranty	20
Linearity	ppm error at full scale, linear at zero and 20ppm O ₃	$< \pm 0.5$
Overgas limit	maximum ppm for stable response to gas pulse	50

* Tested with Alphasense AFE low noise circuit

LIFETIME	Zero drift	ppb equivalent change/year in lab air	0 to 20
	Sensitivity drift	% change/year in lab air, monthly test	< -20 to -40
	Operating life	months until 50% original signal (24 month warranted)	> 24

ENVIRONMENTAL

Sensitivity @ -20°C	(% output @ -20°C/output @ 20°C) @ 2ppm O ₃	60 to 80
Sensitivity @ 40°C	(% output @ 40°C/output @ 20°C) @ 2ppm O ₃	80 to 105
Zero @ -20°C	nA	0 to 25
Zero @ 40°C	nA	20 to 90

CROSS	H¸S	sensitivity % measured gas	@	5ppm	H ₂ S	< 100
SENSITIVITY	NÔ	sensitivity % measured gas	@	5ppm	NÔ	< 5
	Cl ₂	sensitivity % measured gas	@	5ppm	Cl ₂	< 85
	SÓ,	sensitivity % measured gas	@	5ppm	SÓ,	< -6
	CO	sensitivity % measured gas	@	5ppm	CO	< 0.1
	C_2H_4	sensitivity % measured gas	@	100ppm	C_2H_4	< 0.1
	NH ₃	sensitivity % measured gas	@	20ppm	NH_3	< 0.1
	H_{2}	sensitivity % measured gas	@	100ppm	H_{2}	< 0.1
	CO_2	sensitivity % measured gas	@	5% Vol	CO_2	0.1
	Halothane	sensitivity % measured gas	@	100ppm	Halothane	< 0.1

KEY SPECIFICATIONS

Temperature range	$^{\circ}$ C	-30 to 40
Pressure range	kPa	80 to 120
Humidity range	% rh continuous	15 to 85
Storage period	months @ 3 to 20°C (stored in sealed pot)	6
Load resistor	Ω (AFE circuit recommended)	33 to 100
Weight	a	< 6

NOTE: all sensors are tested at ambient environmental conditions, with 47 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.

OX-A431 Performance Data

Figure 2 Sensitivity temperature dependence to 1ppm 0₃

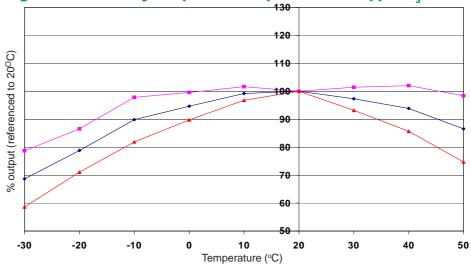


Figure 2 shows the mean and 95% confidence levels for the temperature dependence of sensitivity at 1ppm O_3 .

Measuring Ozone at higher temperatures requires good casing design to ensure the Ozone reaches the sensor before reacting.

This data is taken from a typical batch of sensors.

Figure 3 Zero temperature dependence

Specification

echnica

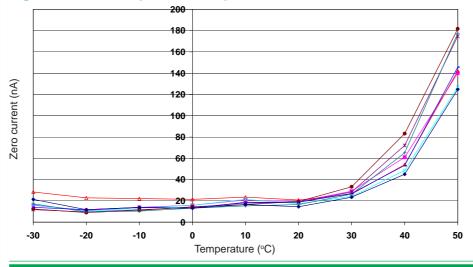


Figure 3 shows the variation in zero output of the working electrode caused by changes in temperature, expressed as nA.

This data is taken from a typical batch of sensors.

Contact Alphasense for futher information on zero current correction.

Figure 4 Response from 200 ppb to 0 ppb O₃

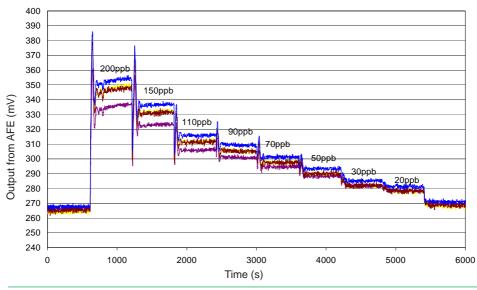


Figure 4 shows response from $200ppb O_3$ to $0ppb O_3$.

Use of Alphasense AFE circuit reduces noise to 15ppb, with the opportunity of digital smooting to reduce noise even further.

Offset voltage is due to intentional AFE circuit electronic offset.

iSweek www.isweek.com

OX-A431 Oxidising Gas Sensor Ozone + Nitrogen Dioxide 4-Electrode

Patented

50 to 80

The OX-A431 detects both ozone and nitrogen dioxide (O_3 +N O_2). The NO2-A43F measures only nitrogen dioxide, filtering out ozone. Using these sensors together allows you to calculate the O_3 concentration by subtracting the corrected NO2-A43F concentration from the corrected OX-A431 concentration.

Before subtracting to determine ozone concentration, ensure that the signals from the two sensors have been corrected for electronic zero offset, sensor zero offset and temperature dependence, and sensitivity (nA/ppm) calibration and temperature dependence.

Specification NO, Sensing

		NCE

pecification

echnical

Sensitivity to NO ₂	nA/ppm at 2ppm NO ₂	-200 to -550
Response time	t ₉₀ (s) from zero to 1ppm NO ₂	< 45
Zero current	nA in zero air at 20°C	-50 to 70
Noise*	±2 standard deviations (ppb equivalent)	15
Range	ppm NO ₂ limit of performance warranty	20
Linearity	ppm error at full scale, linear at zero and 20ppm NO ₂	$< \pm 0.5$
Overgas limit	maximum ppm for stable response to gas pulse	50

* Tested with Alphasense AFE low noise circuit

LIFETIME	Zero drift	ppb equivalent change/year in lab air	0 to 20
	Sensitivity drift	% change/year in lab air, monthly test	< -20 to -40
	Operating life	months until 50% original signal (24 month warranted)	> 24

Sensitivity @ -20°C (% output @ -20°C/output @ 20°C) @ 2ppm NO

ENVIRONMENTAL

2000	нс	sensitivity % measured ass @ 5ppm HS	- 100
	Zero @ 40°C	nA	20 to 50
	Zero @ -20°C	nA	0 to 25
	Sensitivity @ 40°C	(% output @ 50°C/output @ 20°C) @ 2ppm NO ₂	115 to 130
	Condition C 20 C	(70 output © 20 o/output © 20 o/ © 2pp	00.000

CROSS	H ₂ S	sensitivity % measured gas	@	5ppm	H ₂ S	< 100
SENSITIVITY	NŌ	sensitivity % measured gas	@	5ppm	NŌ	< 5
	Cl ₂	sensitivity % measured gas	@	5ppm	Cl ₂	< 85
	SÓ,	sensitivity % measured gas	@	5ppm	SÔ,	< -6
	CO	sensitivity % measured gas	@	5ppm	CO	< 0.1
	C_2H_4	sensitivity % measured gas	@	100ppm	C_2H_4	< 0.1
	NH_3	sensitivity % measured gas	@	20ppm	$N\dot{H}_3$	< 0.1
	H_2	sensitivity % measured gas	@	100ppm	H, Ŭ	< 0.1
	CO_2	sensitivity % measured gas	@	5% Vol	CO_2	0.1
	Halothane	sensitivity % measured gas	@	100ppm	Halothane	< 0.1

KEY SPECIFICATIONS

Temperature range	℃	-30 to 40
Pressure range	kPa	80 to 120
Humidity range	% rh continuous	15 to 85

At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact the instrument manufacturer, Alphasense or its distributor for disposal instructions.

NOTE: all sensors are tested at ambient environmental conditions, with 47 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.

Specification echnical

OX-A431 Performance Data

Figure 5 Sensitivity temperature dependence to 2ppm ${
m NO}_2$

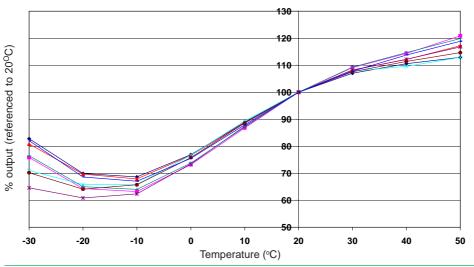
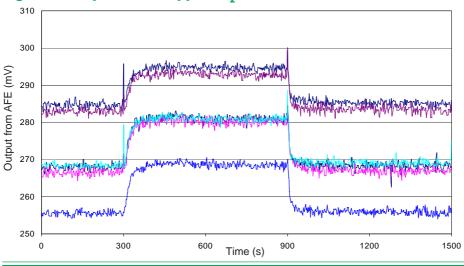



Figure 5 shows the temperature dependence of sensitivity at 2ppm NO₂.

This data is taken from a typical batch of sensors.

Figure 6 Response to 50ppb NO₂

The OX-A431 shows fast response and return to baseline, even at low concentrations.

Figure 7 Response from 200 ppb to 0 ppb NO,

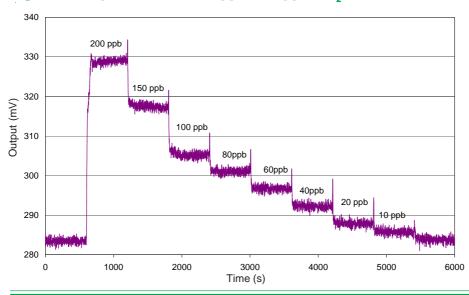


Figure 7 shows response from 200ppb NO₂ to 0ppb NO₂.

Use of Alphasense AFE circuit reduces noise to 15ppb, with the opportunity of digital smooting to reduce noise even further.

Offset voltage is due to intentional AFE circuit electronic offset.