

Gear Tooth Speed and Direction Sensor

SD101201 Sensors

Circuit protected, flange mount Hall Effect gear tooth speed and direction sensor

Description

The SD101201 has two Hall Effect sensors; one detects speed and the other detects direction of movement of gear teeth. The outputs are open collector transistors. The Speed output goes low (ON) when sensing the leading edge of a tooth and high (OFF) at the trailing edge of the tooth when run against a standard target (see diagram). The Direction output goes low (ON) for clockwise rotation and high (OFF) for counterclockwise rotation (as seen in the diagram); it is latched in that state as long as there is movement detected. The state of the Direction output always leads the rising edge of the Speed output – correct Direction sensing will occur faster after start-up than correct Speed sensing. An external pull-up resistor is required.

Features

- Separate digital outputs for speed and direction
- From near zero speed up to 15 kHz sensing capability
- Plastic flange-mount sensor rated to 125 °C
- RoHS compliant
- IP67
- Typical air gap of 1.5 mm (0.06")*

Typical Applications

- Wheel speed and direction
- Hoist speed and direction
- Transmission speed and direction
- Industrial feedback and control

Environmental Specifications

Vibration	Sinusoidal, 3.3 g max from 20 Hz to 1 kHz
Maximum Speed Detection	15 kHz
Operating Temperature	-40 °C to 125 °C (-40 °F to 257 °F)
Storage Temperature	-40 °C to 125 °C (-40 °F to 257 °F)
Ingress Protection	IP67

Electrical Specifications

-	
Operating Supply Voltage	4.75 to 24 VDC
Maximum Input Voltage	30 VDC
Maximum Reverse Voltage	30 VDC
Supply Current	20 mA max
Output Sink Current	20 mA max
Typical Operating Time	5 µs
Recommended Pull-Up Resistor	See chart

Mechanical Specifications

Housing Material	Glass Reinforced Thermoplastic
Maximum Installation Torque Limit	5.65 Nm (50 in lb) on threads
Operating Air Gap / Sensing Distance*	1.5 mm (0.06")
* With recommended target type; see drawing	
Sensor Orientation	Sensitive; see drawing

Products

Part Number	Connector**
SD101201	Delphi Metri-Pak 150

^{**} Mates to Delphi 12162833 connector, 12124075 terminal

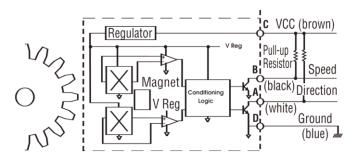
Note: An external pull-up resistor is required, the value of which is dependent on the supply voltage. The resistor should be connected between the output and Vcc. Refer to the wiring diagram for lead colors or pin numbering as applicable.

Recommended External Pull-Up Resistor

Volts DC	5	9	12	15	24
Ohms	1k	1.8k	2.4k	3k	4.8k

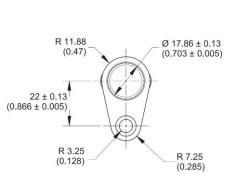
ISweek www.isweek.com

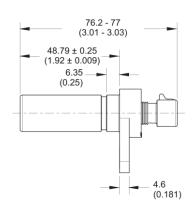
Add: 16/F, Bldg. #3, Zhongke Mansion, No.1 Hi-Tech S. Rd, Hi-Tech Park South, Shenzhen, Guangdong, 518067 P.R.China


Tel: + 86-755-83289036

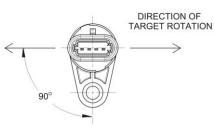
Fax: +86-755-83289052

E-mail: sales@isweek.com

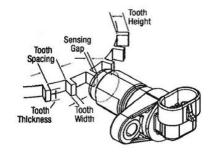


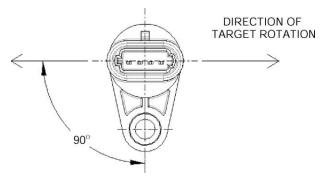

Open Collector Sinking Block Diagram




PIN A	PIN B	PIN C	PIN D
Direction Output	Speed Output	Power	Ground

Dimensions mm (inches)





Installation

For best results, we recommend targets made from low carbon cold rolled steel. Other factors that influence sensor performance include gear tooth height and width, space between the teeth, shape of the teeth and thickness of the target. As a general guideline, consider a target with minimum parameters as shown below. Note that smaller dimensions may work, but testing for the application is required.

Tooth Height	Tooth Width	Distance between Teeth	Target Thickness
5.0 mm (.200")	2.5 mm (.100")	10 mm (.400")	6.35 mm (.250")

