

GaP detector with integrated amplifier

GENERAL FEATURES

1/4

Properties of the TOCON_GaP4

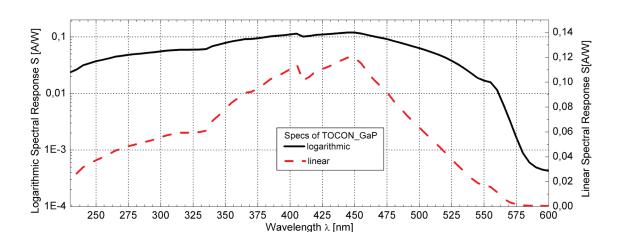
- GaP detector for irradiation measurement in TO5 housing with diffusor
- o... 5 V voltage output
- peak wavelength at 445 nm
- max. radiation (saturation limit) at peak is 9 μW/cm², minimum radiation (resolution limit) is 0.9 nW/cm²
- Applications: measurement of very low UV...VIS (570nm) irradiation, occupational safety

What is a TOCON?

A TOCON is a 5 Volt powered UV photodetector with integrated amplifier converting UV radiation into a o...5V voltage output. The V_{out} pin of the TOCON can be directly connected to a controller, a voltmeter or any other data analyzing device with voltage input. Highly modern electronic components and a hermetically sealed metal housing with UV glass window eliminates noise caused by parasitic resistance paths inside the package or EMI. A TOCON is a perfect solution for each industrial UV sensing application starting from flame detection at pW/cm² level up to UV curing lamp control at W/cm² level. This thirteen orders of magnitude range is covered by ten different TOCONs that differ by their sensitivity. The TOCONs are produced as UV broadband sensors or with filters for selective measurement.

NOMENCLATURE

TOCON_	ABC, A, B, C, blue or GaP	1 10
	Spectral response	Irradiance limits ($V_{supply}=5V$, $\lambda=\lambda_{peak}$)
	ABC = broadband $\lambda_{\text{max}} = 290 \text{ nm} \lambda_{\text{Strow,}} = 227 \text{ nm} \dots 360 \text{ nm}$	1 = 1,8 pW/cm ² 18 nW/cm ²
	A = UVA $\lambda_{\text{max}} = 331 \text{nm} \lambda_{\text{S10\%}} = 309 \text{nm} \dots 367 \text{nm}$	2 = 18 pW/cm ² 180 nW/cm ²
		3 = 180 pW/cm ² 1,8 μW/cm ²
	B = UVB $\lambda_{\text{max}} = 280 \text{ nm} \lambda_{\text{S10\%}} = 243 \text{ nm} \dots 303 \text{ nm}$	$4 = 1.8 \text{ nW/cm}^2 \dots 18 \mu\text{W/cm}^2$
		5 = 18 nW/cm^2 $180 \mu\text{W/cm}^2$
	C = UVC $\lambda_{\text{max}} = 275 \text{ nm} \lambda_{\text{S10\%}} = 225 \text{ nm} \dots 287 \text{ nm}$	6 = 180 nW/cm ² 1,8 mW/cm ²
		7 = 1,8 μW/cm ² 18 mW/cm ²
	Blue $\lambda_{\text{max}} = 445 \text{ nm} \lambda_{\text{S10\%}} = 390 \text{ nm} \dots 515 \text{ nm}$	8 = 18 μW/cm ² 180 mW/cm ²
	Gap $\lambda_{\text{max}} = 445 \text{ nm} \lambda_{\text{S10\%}} = 190 \text{ nm} \dots 570 \text{ nm}$	$9 = 180 \mu\text{W/cm}^2 \dots 1,8 \text{W/cm}^2$
		10 = 1,8 mW/cm ² 18 W/cm ²
	E = UV-Index spectral response according to CIEo87	2 = 0 UVI 30 UVI

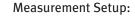

GaP detector with integrated amplifier

SPECIFICATIONS

2/4

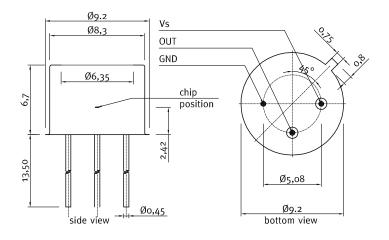
Parameter	Symbol	Value	Unit
Spectral Characteristics			
Typical Responsivity at Wavelength 395 nm	S_{max}	560	$\text{mV}/\mu\text{W}/\text{cm}^2$
Wavelength of max. Spectral Responsivity	λ_{max}	445	nm
Responsivity Range (S=0.1*S _{max})	-	190 570	nm
General Characteristics (T=25°C, V _{supply} =+5 V)			
Supply Voltage	V_{Supply}	2.5 5	V
Saturation Voltage	V_{Sat}	V _{Supply} - 5%	V
Dark Offset Voltage	V_{Offset}	50	μV
Temperature Coefficient at Peak	T_c	< -0.5	%/K
Current Consumption	1	150	μΑ
Bandwidth (-3 dB)	В	15	Hz
Risetime (10-90%)	t_{rise}	0.066	S
(other risetimes on request)			
Maximum Ratings			
Operating Temperature	T_{opt}	−25 +85	°C
Storage Temperature	T_{stor}	-40 +100	°C
Soldering Temperature (3s)	T_{sold}	300	°C

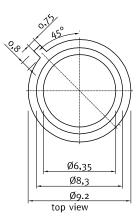
NORMALIZED SPECTRAL RESPONSIVITY



GaP detector with integrated amplifier

FIELD OF VIEW


3/4



lamp aperture diameter: 10 mm distance lamp aperture to second aperture: 17 mm second aperture diameter: 10 mm distance second aperture to detector: 93 mm

pivot level = top surface of the detector window

DRAWING

GaP detector with integrated amplifier

4/4

р

APPLICATION NOTE FOR TOCONS

The TOCONs need a supply voltage of $V_{\text{supply}} = 2.5 \dots 5V_{\text{DC}}$ and can be directly connected to a controller or voltmeter. Please note that the theoretic maximum signal output is always a little less (approx. 5%) than the supply voltage. To learn more about perfect use of the TOCONs please refer to the TOCON FAQ list published at www.sglux.com.

CAUTION! Wrong wiring leads to destruction of the device.

For easy setup of the device please ask for a TOCON starter kit.

Miniature steel housing with M12x1 thread for the TOCON series

- Optional feature for all TOCON detectors
- Robust stainless steel M12x1 thread body, length 32 mm
- Integrated sensor connector (Binder 4-Pin plug) with 2m connector cable
- Easy to mount and to connect

Miniature PTFE housing with M12x1 thread for the TOCON series

- Optional feature for all TOCON detectors without concentrator lens
- Teflon (PTFE) M12x1 thread body, length 31 mm
- Wide field of view, dirt-repellant, water proof at wet side (IP 68)
- Integrated sensor connector (Binder 4-Pin plug) with 2m connector cable
- Easy to mount and connect, cleanable

The PTFE housing reduces the signal output by approx. 95%. Please consider this while selecting the TOCON's sensitivity range.

Plastic probes

- Optional feature for all TOCON detectors
- UV probes in small plastic housings with a TOCON inside
- Customized housings available
- · Easy to mount and to connect
- Integrated sensor connector (Binder 4-Pin plug)
- Cable available

Water pressure proof TOCON housing

- Optional feature for all TOCON detectors without concentrator lens
- G1/4" thread, 10 bar water pressure proof
- Customized housings available
- Easy to mount and to connect
- Integrated sensor connector (Binder 4-Pin plug)
- Cable available