MULTI-FUNCTION DIGITAL COUNTER

OPERATING INSTRUCTION

Multi-Function Digital Counter

NTRODUCTION
UNPACKING AND INSPECTION.
SAFETY PRECAUTIONS
SAFETY INFORMATION
SYMBOLEXPLANATION.
NSTRUMENT FORWARD LAYOUT2

NSTRUMENT REAR LAYOUT7
NTRODUCTION 8
REQUENCY MEASUREMENT 9
9
PERIOD MEASUREMENT
TOTAL MEASUREMENTgeneral specifications10
RESOLUTION AND ACCURACY 10
11
NPUT CHARACTERISTICS
11
general maintenance
REPLACING THE POWER FUSE 12
OTHER NOTE

Multi-Function Digital Counter

Introduction
his manual contains information and warnings, which must be followed to ensure safe operation and retain the instrument in safe

\triangle warning

READ " SAFETY INFORMATION " bEFORE USING THE INSTRUMENT This is an intelligent multiple function digital counter. It is controlled by an 8 -Bit micro-controller and with eight-digit
LED high bright display. Four measuring functions of frequency, period, totals and self-check are involved in this counter. Otherwise there is a 10 MHz OSC. OUT. The input signal can be conditioned by attenuation. wo kinds of power 110 VAC and 220 VAC can be supplied to the instrument. User can conveniently select it. This instrument has been designed according to IEC 1010-1 concerning safety requirements.
Unpacking and Inspection
instrument from its packing, you should have the following items:
. Multiple function digital counter.
BNC to BNC Test Lead, $50 \mathrm{ohm}, 100 \mathrm{~cm}$
3. Power Cord
4. Users Manual

If any of the above items are missing or are received in a damaged condition, please contact the distributor from whom you purchased the unit.
\ Safety Precautions
Injury or death can occur even with low voltages and low current. It is extremely important that you read these safety informations
before using your instrument. Follow all safety practices and proper operating procedures for equipment being tested. Exercise extreme caution when: Measuring voltage above 20 volts, measuring current greater that 10 mA , measuring AC power line with inductive loads, measuring AC power line during electrical storms.
2. Always inspect your instrument, test tead and accessories for sign of damage or abnormality before every use. If any abnormal
conditions exist (i.e., broken or damaged test lead, cracked case, display not reading, etc.), do not attempt to take measurements
3. Never ground yourself when taking electrical measurements. Do not touch exposed metal pipes, which might be at ground
potential. Keep your body isolated from ground by using dry clothing; rubber shoes, rubber mats, or any approved insulating
material.
Never touch exposed wiring, connections, test probe tips, or any live circuit conductors when attempting to make measurements.

Multi-Function Digital Counter

5. Never replace the protective fuse inside the instrument with a fuse other than the specified or approved equal fuse. Replace only
with same type of fuses. To avoid electrical shock, disconnect the Power Cord, test lead and any input signals before replacing the fuses.
. Do not operate this instrument in an explosive atmosphere (i.e., in the presence of flammable gases or fumes, vapor or dust.) . Measuring voltage that exceeds the limits of the einstrument may damage it and expose the operator to a shock hazard. Always
recongize the instrument voltage limits as stated on the front of the instrument recognize the instrument voltage limits as stated on the front of the instrument
Never apply

. Do not attempt calibration or service unless trained and another person capable of rendering first aid and resuscitation is present. 0.Remember: Think Safet

This Safety Information
This product complies with the requirements of the following European Community Directives: 89/336/EEC (Electromagnetic

Symbol Explanation
Note-Important safety information, refer to the instruction manual.
© Caution, possibility of electric shock
回 Equipment protected throughout by double insulation or reinforced insulation.

$\underline{\Xi}$	Earth (ground) TERMINAL

$\boldsymbol{\sim}$	Direct current
$\boldsymbol{\sim}$	Alternating current

CAT III: MEASUREMENT CATEGORY III is applicable to test and measuring circuits connected to the distribution part of the building's
Iow-voltage MAINS installation.

Multi-Function Digital Counter

Instrument forward Layout

Multi-Function Digital Counter

Power Switch To turn on, depres

2. Hold

Depress HOLD button to toggle in and out of the Data Hold mode. Releasing Data Hold mode again press the button.
3. RESET

Pressing RESET, immediately eight-digit LED and eight LED indicators of the instrument are full lit. After RESET, the instrument is
auto 10 Mz frequency measurement range. Pressing $\mathrm{RESET}, \mathrm{immediately}$ eight-digit
auto 10 Mz frequency measurement range
4. CHECK

Pressing the CHECK button, eight-digit LED and eight LED indicators are lit from 0 to 9 to eight LED indicators. So circle,
5. A.TOT

Pressing A.TOT button to Total measurement mode.
6. A.PERI

Fessing A.PERI button to period measurement mode.
7. G.time

For frequency measurement mode, this button is used to change gate time. When period measurement mode, this button is used For rrequency measurement mode, this button is used to c)
to change the multiplier factors. Each range is as follows:

Multi-Function Digital Counter

Channel a input mode
Frequency resolution
Frequency resolution

Gate Time	10 MHz Range Resolution	100 MHz Range Resolution
0.02 Ses	00000.0 kHz	000.000 kHz
0.2 Ses	00000.00 kHz	000.0000 kHz
2 Ses	00000.000 kHz	000.00000 kHz

Period resolution
Gate Time Resolution 0.02 Ses $0.0 \mu \mathrm{~s}$ 0.2 Ses $0.00 \mu \mathrm{~s}$ 2 Ses 0.000 ss

Channel binput mode
Frequency resolution

Gate Time	1300 MHz Range Resolution
0.025 Ses	0000.00 Hz
0.25 Ses	0000000 kHz
2.5 Ses	0000.0000 kHz

Multi-Function Digital Counter

8. FREQ.

For frequency measurement mode, this button is used to change frequency range. After RESET, The instrument is auto into OMHz-frequency measurement range. This button is pushed one time; instrument is auto into 100 MHz -frequency measurement
9. A.ATTN
Input signal attenuate button. When depress, the sensitivity is attenuated by a factor 20 for input signal.
10. L.F

Low pass filter button. When depress:
$\sim 100 \mathrm{kHz},-3 \mathrm{~dB}$
$\underset{\sim}{\sim} \underset{\sim}{\sim} 100 \mathrm{kHz},--3 \mathrm{~dB}$ at ATTN condition
11. A INPUT

Channel A input BNC connector.
Put a signal in to measure for $10 \mathrm{~Hz} \sim 100 \mathrm{MHz}$ frequency, period and total.
12. BINPUT

Channel B input BNC connector.
Put a signal in to measure for $100 \mathrm{Mz} \sim 1300 \mathrm{MHz}$ frequency,
13. Disprav

EIGHT-DIGIT LED: Display measurement value
GATE INDICATOR: Display the opened or closed state of the GATE. When GATE is open, indicator is lit
OFL INDICATOR: When overflow, the indicator is lit.
1300 MHz INDICATOR: When selecting the 1000 MHz range, the indicator is lit.
100 MHz INDICATOR: When selecting the 100 MHz range, the indicator is lit.
100 MHz INDICATOR: When selecting the 100 MHz range, the indicator is 1 .
10MHz INDICATOR: When selecting the 10 MHz range, the indicator is lit.
10MHZ INDICATOR: When selecting the
kHz INDICATOR:
:he unit of frequency.
MHZ INDICATOR: The unit of freque
$\mu \mathrm{S}$ INDICATOR: The unit of period.

Multi-Function Digital Counter

Instrument Rear Layout

Multi-Function Digital Counter

1. POWER INPUT WITH FUSE

\triangle warning

To avoid user for injury and the instrument for damage, the voltage value of AC power must be examined with same the power requirements of instrument before connect power cord to live power source and the power select switch is turned on.

\triangle warning

To avoid electrical shock, disconnect power cord from live power source and remove the test leads and any input signals before replacing the power fuses. Replace only with the same type of fuses.
2. POWER SELECT

110VAC and 220 VAC can be supplied to the instrument. According to the user's needs, select it.
3. OSC.OUT
utput connector for reference oscillator. This connector provides a 10 MHz signal. It may be used as used as a reference signal
4. GND TERMINAL

Introduction

\triangle warning

To avoid user for injury and the instrument for damage, the voltage value of AC power must be examined with same the power requirements of instrument before connect power cord to live power source and the switch is turned on.

Multi-Function Digital Counter

Before making any measurements always examine the instrument and accessories used with the instrument for damage,
contamination (excessive dirt, grease, ect.) and defects. Examine the test leads for cracked or frayed insulation and make sure the contamination (excessive dirt, grease, ect.) and defects. Examine the test leads for cracked or frayed insulatio
lead plugs fit snugly into the instrument jacks. If any abnormal exist do not attempt to make any measurements.
Frequency Measurement
rement

- Press the FREQ. button to select the appropriate range that you are desirous to
- Press the G. TIME button to select the desiried gate time.
- Connect the input signal to the front -panel BNC connector.
sensitivity of the input section by a 20 and reduce errors.
- Read the frequency on display, and observe the unit of measurement indication.
Period Measurement
- Press the POWER button to the ON position
- Press the A.PERI. button to select the period mode.
- Press the G. TIME button to select the desired gate time.
- Connect the input signal to the AINPUT BNC connector
-If input signal level is greater set A.ATTN. button to decrease the triggering sensitivity of the input section by a 20 and reduce errors
Read the period time on display, and observe the unit of measurement indication.
Total Measurement
Press the POWER button to the ON position.
Connect the input signal to the A INPUT BNC con
If input signal level is greater, set A. ATTN. button to decrease the triggering sensitivity of the input section by a 20 and reduce errors.
Read the accumulated total on display after HOLD button in.
Check mode
The self-check mode provides a means of verifying proper overall operation of counter, excluding input section, time base
accuracy, and time base dividers used in the period mode.
- Press the POWER button to the ON position

Eight-digit LED a and eight L ED indicators - check lit from 0 to 9 to eight LED indicators. So circle.

- Press RESET button to stop the check.

Multi-Function Digital Counter

General Specifications
Display: 8 digit, about 10 mm high red LED display with decimal point.
Overrange indications: OFL indication is lit.
Power Requirement: $\mathrm{AC} 198264 \mathrm{~V} 50 / 6 \mathrm{~Hz}$ or $90 \sim 132 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.

Relative Humidity: 20% to $80 \% \mathrm{RH}\left(0^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$)
Reative Humidity: 20% to $80 \% \mathrm{RH}\left(0^{\circ} \mathrm{C}\right.$ to 4
Safety: Designed to O $\mathrm{CC} 1010-1$ standard
Size: $300 \mathrm{~mm}(\mathrm{LL)} \times 260 \mathrm{~mm}(\mathrm{~W}) \times 74 \mathrm{~mm}(\mathrm{H})$
Weight: Approx. 1850 g .
Frequency measurement ± 1 count \pm time base error x frequency
requency measurement: ± 1 count \pm time base error x free
Period measurement: ± 1 count \pm time base error \times period
Time base error: Long term stability 1110^{5}. (month)
Time base error: Long term stability 1×10^{5} (month)
Accuracy is given as at $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$, with relative humidity up to 80%. All specifications assume less than 1 year since calibration.
Resolution and Accuracy
Resolution and Accuracy
requency measurements

Channel		Range	Resolution	Accuracy
A	10 MHz	10 Hz to 10 MHz	1,10, 100 Hz selectable	$\begin{aligned} & \pm 1 \text { count } \pm 1 \times 10^{-5} \times \text { frequency (month) } \\ & \pm 1 \text { count } \pm 5 \times 10^{-6} \times \text { frequency (minute) } \end{aligned}$
	100 MHz	10 MHz to 100 MHz	$10,100,1000 \mathrm{~Hz}$ selectable	
B	1300 MHz	100 MHz to 1300MHz	$100,1000 \mathrm{~Hz}, 10 \mathrm{kHz}$ selectable	

Period measurements

Channel	Range	Resolution	Accuracy
$\begin{gathered} \text { A } \\ \text { (only) } \end{gathered}$	$\begin{gathered} 0.1 \mathrm{~s} \text { to } 0.1 \mu \mathrm{~s} \\ (10 \mathrm{~Hz} \text { to } 10 \mathrm{MHz}) \end{gathered}$	$\begin{gathered} 0.0 \mu \mathrm{~s}, 0.00 \mu \mathrm{~s} \\ 0.000 \mu \mathrm{~s} \text { selectable } \end{gathered}$	± 1 count $\pm 1 \times 10^{-5}$ period (month) ± 1 count $\pm 5 \times 10^{-6}$ period (minute)

Total measurements

Channel	Range	Resolution
A (only)	10 Hz to 10 MHz	1 count input

Multi-Function Digital Counter

Input Char Channel A
 hannelA A

Input voltage sensitivity:
10 MHz range: 10 Hz to 8 MHz 25 mV rms. 8 MHz to 10 MHz 50 mV rms.

ttenuation: x1, x20 fixed
mpedance: approx. $1 \mathrm{M} \Omega$ less than 35 pF
Maximum voltage protection: 250 V RMS
Maximum vo
nput voltage sensitivity: 20 mV rms .
Impedance: approx. 50Ω
Maximum input voltage: 3 V RMS
General Maintenance
Periodically wipe the case with a damp cloth and mild detergent. Do not use abrasives or solvents
Periodically wipe the case with a damp cloth and mil
Dirt or moisture in the terminals can affect readings.
To clean the terminals:
Press the power button to OFF.
Remove the power Cord from live power source,
3. Remove the test leads from the input terminals,
4. Shake out any dirt that may be in the terminals.

\triangle warning

To avoid electrical shock, disconnect power cord from live power source and remove the test leads and any input signals before replacing the power fuses. Replace only with same type of fuses.

Replacing the Power Fuse
or replace the power fuses

1. Press the power button to OFF.
. Remove the power cord from live power source.
Remove the test leads from the input terminals.
2. Remove the test leads from the input terminals.
3. Replace the power fuse from the supply power inlet with fuse. Replace the blown fuse with same ratings
. The power fuse: Fast, F 200 mA H $250 \mathrm{~V}, \varnothing 5 \times 20 \mathrm{~mm}$.
Other Note
4. Do not use abrasives or solvents on the instrument, use a damp cloth and mild detergent only.
5. If any faults or abnormalities are observed, the instrument can not be used any more and it has to be checked out.
